AP Chemistry Chapter 21 - The Nucleus: A Chemist's View

21.1 Nuclear Stability and Radioactive Decay

- A. Radioactive Decay
 - 1. Decomposition forming a different nucleus and producing one or more particles
 - a. Total mass number and atomic number must be conserved in any nuclear change

$${}_{4}^{9}Be + {}_{2}^{4}He \rightarrow {}_{6}^{12}C + {}_{0}^{1}n$$

- B. Zone of Stability
 - 1. Of 2000 known nuclides, only 279 are stable with respect to radioactive decay
 - 2. All nuclides with more than 83 protons (bismuth) are unstable
 - 3. Light nuclides are most stable when the neutron/proton ratio is 1
 - 4. Heavier nuclides are most stable when the neutron/proton ratio is greater than 1

a. Special stability exists when the number of protons or neutrons is:

Neutrons

Stable isotopes

Ratio of 1:1

Protons

C. Types of Radioactive Decay

- 1. Alpha Emission
 - a. Alpha particle (α) is a helium nucleus (${}_{2}^{4}He$), so it has a 2+ charge
 - b. Alpha emission is restricted almost entirely to very heavy nuclei

$$^{210}_{84}Po + \rightarrow ^{206}_{82}Pb + ^{4}_{2}He$$

- 2. Beta Emission
 - a. Beta particle (β) is an electron emitted from the nucleus during nuclear decay

$${}_{0}^{1}n \rightarrow {}_{1}^{1}p + {}_{-1}^{0}\boldsymbol{b}$$

b. Beta particles are emitted when a neutron is converted into a proton and an electron

$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}\boldsymbol{b}$$

- 3. Positron Emission
 - a. Positrons are particles that have the same mass as an electron, but a positive charge
 - b. Positron emission arises from the conversion of a proton into a neutron and a positron

$${}_{1}^{1}p \rightarrow {}_{0}^{1}n + {}_{+1}^{0}\boldsymbol{b}$$
 ${}_{19}^{38}K \rightarrow {}_{18}^{38}Ar + {}_{+1}^{0}\boldsymbol{b}$

1

$$^{38}_{19}K \rightarrow ^{38}_{18}Ar + ^{0}_{11}b$$

4. Electron Capture

- a. Inner orbital electron is captured by the nucleus of its own atom
- b. Electron combines with a proton and a neutron is formed

$${}^{0}_{-1}e + {}^{1}_{1}p \rightarrow {}^{1}_{0}n$$
 ${}^{106}_{47}Ag + {}^{0}_{-1}e \rightarrow {}^{106}_{46}Pd$

5. Gamma Emission

- a. Gamma rays () are high-energy electromagnetic waves emitted from a nucleus as it changes from an excited state to a ground energy state
- b. Gamma rays are produced when nuclear particles undergo transitions in energy levels
- c. Gamma emission usually follows other types of decay that leave the nucleus in an excited state

D. Decay Series

- 1. In some cases, multiple decays are needed to produce a stable nuclide
 - a. Original nuclide is called the "Parent" nuclide
 - b. Ensuing decay nuclides are called "daughter" nuclides

21.2 The Kinetics of Radioactive Decay

- A. Rate of Decay
 - 1. The negative of the change in the number of particles per unit of time

$$Rate = -\frac{\Delta N}{\Delta t} \propto N$$
 $Rate = -\frac{\Delta N}{\Delta t} = kN$

a. This is a first order rate law, so...

$$\ln\left(\frac{N}{N_0}\right) = -kt$$

 N_0 = original number of nuclides (at t = 0) N = the number of nuclides remaining at time t

- B. Half-Life (t_{1/2})
 - 1. The time required for the number of nuclides to reach half the original value

$$t_{1/2} = \frac{\ln(2)}{k} = \frac{0.693}{k}$$

2

Representative Radioactive Nuclides and Their Half Lives			
Nuclide	Half-life	Nuclide	Half-life
$_{1}^{3}H$	12.32 years	$^{214}_{84}Po$	163.7 μseconds
$^{14}_{6}C$	5715 years	²¹⁸ ₈₄ Po	3.0 minutes
$^{32}_{15}P$	14.28 days	$^{218}_{85}At$	1.6 seconds
$^{40}_{19}K$	1.3 x 10 ⁹ years	$^{238}_{92}U$	4.46 x 10 ⁹ years
$^{60}_{27}Co$	10.47 minutes	$^{239}_{94}Pu$	2.41 x 10 ⁴ years

21.3 Nuclear Transformations

- A. Nuclear Transformation
 - 1. The change of one element into another
- B. Methods of Transformation
 - 1. Particle accelerators overcome the repulsive forces of the target nucleus
 - a. Cyclotron
 - (1) Particle is accelerated from the inside and takes the spiral path to the target outside
 - b. Linear Accelerator
 - (1) Particle is accelerated down a linear track
- C. Transuranium Elements
 - 1. Elements beyond Uranium

93 -112, 114, 116, 118 (as of May, 1999)

*** notice the absence of odd atomic numbers in the heavy nuclides

21.4 Detection and Uses of Radioactivity

- A. Detection
 - 1. Geiger counter
 - 2. Scintillation counter
- B. Dating by Radioactivity
 - Decay rate of unstable nuclides can be used to determine age of some objects
 - 2. Carbon-14 dating (radiocarbon dating)
 - a. Carbon-12 is stable
 - b. Carbon-14 decays, with a half-life of 5730 years

$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + {}^{0}_{-1}\boldsymbol{b}$$

- (1) Living things take in carbon-12 and carbon-14, in a fixed ratio
- (2) When a living thing dies, the amount of carbon-12 does not change, but carbon-14 begins to decrease through decay

21.5 Thermodynamic Stability of the Nucleus

A. Mass Defect

1. The difference between the mass of an atom and the sum of the masses of its protons, neutrons, and electrons

For ${}_{2}^{4}He$:

2 protons: $(2 \times 1.007 \times 276)$ amu) = 2.014 552 amu 2 neutrons: (2 x 1.008 665 amu) = 2.017 330 amu 2 electrons: (2 x 0.000 5486 amu) = 0.001 097 amu total combined mass = 4.032 979 amu

> Helium's atomic mass = 4.002 60 amu Mass defect = 0.03038 amu

B. Nuclear Binding Energy

- 1. The energy released when a nucleus is formed from nucleons
- 2. The energy required to break apart the nucleus
- 3. Mass defect is related to nuclear binding energy by the equation:

$$E = mc^2$$
 $\Delta E = \Delta mc^2$

- a. $(-0.03038 \text{ amu})(1.66 \times 10^{-27} \text{ kg/amu}) = -5.04 \times 10^{-29} \text{ kg}$ b. $\Delta E = (-5.04 \times 10^{-29} \text{ kg})(3.00 \times 10^8 \text{ m/s})^2 = -4.54 \times 10^{-12} \text{ J}$
- c. Binding energy per nucleon = $\frac{4.54 \times 10^{-12} \text{ J}}{4 \text{ nucleons}}$ = 1.14 J/nucleon

C. Binding Energy per Nucleon

- 1. The binding energy of the nucleus divided by the number of nucleons it contains
- 2. High binding energy per nucleon results in greater stability
 - a. The most stable nucleus is that of iron-56

21.6 Nuclear Fission and Nuclear Fusion

A. Nuclear Fission

- 1. Splitting a heavy nucleus into two nuclei with smaller mass numbers
- 2. The mass of the products is less than the mass of the reactants. Missing mass is converted to energy

B. Chain Reaction

1. A reaction in which the material that starts the reaction is also one of the products and can start another reaction

C. Critical Mass

1. The minimum amount of nuclide that provides the number of neutrons needed to sustain a chain reaction

D. Nuclear Fusion

1. Combining two light nuclei to form a heavier, more stable nucleus

A. Fusion Reactions

- 1. More energetic than fission rxns
- 2. Source of energy of the hydrogen bomb
- 3. Could produce energy for human use if a way can be found to contain a fusion rxn (magnetic field?)