Chapter Six Notes - Thermochemistry

6.1 The Nature of Energy

- A. Definition
 - 1. Energy is the capacity to do work (or to produce heat*)
 - a. Work is a force acting over a distance (moving an object)
 - b. *Heat is actually a form of energy.
 - (1) chemicals may store potential energy in their bonds that can be released as heat energy
- B. Law of Conservation of Energy
 - Energy can be converted from one form to another, but cannot be created or destroyed
 - a. Potential energy
 - (1) energy due to position or composition
 - b. Kinetic energy
 - (1) energy due to the motion of an object

(2)
$$KE = \frac{1}{2}m v^2$$

- C. Heat and Temperature
 - 1. Temperature reflects random motion of particles in a substance
 - 2. Temperature indicates the direction in which heat energy will flow
 - 3. Heat is a measure of energy content
 - 4. Heat is what is transferred during a temperature change
- D. State Functions
 - 1. A property of a system that depends only on its present state.
 - 2. State functions do not depend on what has happened in the system, or what might happen in the system in the future
 - 3. State functions are independent of the pathway taken to get to that state

Example: a liter of water behind a dam has the same potential energy for work regardless of whether it flowed downhill to the dam, or was taken uphill to the dam in a bucket. The potential energy is a state function dependent only on the current position of the water, not on how the water got there.

- E. Chemical Energy
 - 1. Exothermic reactions
 - a. Reactions that give off energy as they progress
 - b. Some of the potential energy stored in the chemical bonds is converted to thermal energy (random KE) through heat
 - c. Products are generally more stable (stronger bonds) than reactants
 - 2. Endothermic reactions
 - a. Reactions in which energy is absorbed from the surroundings
 - b. Energy flows into the system to increase the potential energy of the system

- c. Products are generally less stable (weaker bonds) than the reactants
- F. Thermodynamics
 - 1. System Energy

$$\Delta E = q + w$$

- a. q = heat
 - (1) q is positive in endothermic reactions
 - (2) q is negative in exothermic reactions
- b. w = work
 - (1) w is negative if the system does work
 - (2) w is positive if work is done on the system
- 2. Work done by gases

$$w = -P\Delta V$$

- a. by a gas (through expansion)
 - (1) DV is positive
 - (2) w is negative
- b. to a gas (by compression)
 - (1) **DV** is negative
 - (2) w is positive
- 6.2 Enthalpy and Calorimetry
 - A. Enthalpy

$$H = E + PV$$

1. In systems at constant pressure, where the only work is PV, the change in enthalpy is due only to energy flow as heat $(\Delta H = heat \ of \ rxn)$

$$\Delta H = H_{products} - H_{reactants}$$

- a. ΔH is negative for exothermic rxns
- b. ΔH is positive for endothermic rxns

(B) Exothermic change

- B. Calorimetry science of measuring heat
 - 1. Heat capacity (C)
 - a. ratio of heat absorbed to increase in temperature

$$C = \frac{heat\ absorbed}{Temperature\ increase}$$

- 2. Specific Heat Capacity
 - a. Energy required to raise the temp of 1 gram of a substance by 1 °C
- 3. Molar heat capacity
 - a. Energy required to raise the temp of 1 $\underline{\text{mole}}$ of a substance by 1 $^{\circ}\text{C}$
- C. Constant Pressure Calorimetry (solutions)
 - 1. Calculating Heat of Rxn, ∆H
 - a. ΔH = specific heat capacity x mass of sol'n x increase in temp

$$\Delta H = s \times m \times \Delta T$$

- 2. Heat of rxn is an extensive property dependent on the amount of substance
 - a. $\Delta H \alpha$ moles of reactant
- D. Constant Volume Calorimetry
 - 1. Volume of bomb calorimeter cannot change, so no work is done
 - 2. The heat capacity of the calorimeter must be known, generally in kJ/°C

2.
$$\Delta E = q + w$$
, $w = 0$ \therefore $\Delta E = q$

6.3 Hess's Law

- A. Statement of Hess's Law
 - 1. In going from a particular set of reactants to a particular set of products, the change in enthalpy (ΔH) is the same whether the reaction takes place in one step or in a series of steps

One step:

$$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$$
 $\Delta H_1 = 68kJ$

Two step

$$N_{2}(g) + O_{2}(g) \rightarrow 2NO(g)$$
 $\Delta H_{2} = 180kJ$
 $2NO(g) + O_{2}(g) \rightarrow 2NO_{2}(g)$ $\Delta H_{3} = -112kJ$
 $N_{2}(g) + 2O_{2}(g) \rightarrow 2NO_{2}(g)$ $\Delta H_{2} + \Delta H_{3} = 68kJ$

- B. Characteristics of Enthalpy Changes
 - 1. If a reaction is reversed the sign on ΔH is reversed

$$N_2(g) + 2O_2(g) \rightarrow 2NO_2(g)$$
 $\Delta H = 68kJ$
 $2NO_2(g) \rightarrow N_2(g) + 2O_2(g)$ $\Delta H = -68kJ$

- 2. The magnitude of ΔH is directly proportional to the quantities of reactants and products in a reaction. If the coefficients in a balanced reaction are multiplied by an integer, the value of ΔH is multiplied by the same integer
- C. Using Hess's Law
 - 1. Work backward from the final reaction
 - 2. Reverse reactions as needed, being sure to also reverse ΔH
 - 3. Remember that identical substances found on both sides of the summed equation cancel each other
- 6.4 Standard Enthalpies of Formation
 - A. Standard State
 - 1. For a compound
 - a. Gaseous state
 - (1) pressure of 1 atm
 - b. Pure liquid or solid
 - (1) standard state is the pure liquid or solid
 - c. Substance in solution
 - (1) concentration of 1 M
 - 2. For an element
 - a. the form in which the element exists at 1 atm and 25°C
 - B. Standard Enthalpy of Formation (ΔH_f°)
 - 1. The change in enthalpy that accompanies the formation of one mole of a compound from its elements with all elements in their standard state
 - C. Calculating enthalpy change
 - 1. When a rxn is reversed, the magnitude of ΔH remains the same, but its sign changes
 - 2. When the balanced eqn for a rxn is multiplied by an integer, the value of ΔH must be multiplied by the same integer
 - 3. The change in enthalpy for a rxn can be calculated from the enthalpies of formation of the reactants and products

$$\Delta H_{reaction}^{\circ} = \sum_{n} n_{p} \Delta H_{f}^{\circ}(products) - \sum_{n} n_{r} \Delta H_{f}^{\circ}(reac \tan ts)$$

- 4. Elements in their standard states are not included
 - a. For elements in their standard state, $\Delta H_f^{\circ} = 0$

6.5 Present Sources of Energy

A. Fossil Fuels

- 1. Energy derived from these fuels was initially captured from solar energy by photosynthesis
- 2. Combustion of fossil fuels always produces H₂O and CO₂

B. Petroleum and Natural Gas

- 1. Petroleum
 - a. Thick, dark liquid composed of hydrocarbon
- 2. Natural gas
 - a. Methane, with smaller amounts of ethane, propane and butane

Some Common Hydrocarbons				
CH ₄	Methane			
C ₂ H ₆	Ethane			
C ₃ H ₈	Propane			
C ₄ H ₁₀	Butane			
C ₅ H ₁₂	Pentane			
C ₆ H ₁₄	Hexane			
C ₇ H ₁₆	Heptane			
C ₈ H ₁₈	Octane			

C. Petroleum Refining

- 1. Original refining isolated kerosene (gasoline was a waste product)
- 2. Tetraethyl lead added as an "anti-knock" agent

Petroleum Fraction	Major Uses
C ₅ - C ₁₀	Gasoline
C ₁₀ - C ₁₈	Kerosene, Jet fuel
C ₁₅ - C ₂₅	Diesel fuel, Heating oil, lubricating oil
> C ₂₅	Asphalt

D. Coal

- 1. Four stages of Coal
- 2. Carbon content increases over time
- 3. Value of coal is proportional to carbon content

Mass Percent of Each Element

Type of Coal	<u> </u>		0	IN .	<u> </u>
Lignite	/1	4	23	1	1
Subbituminous	77	5	16	1	1
Bituminous	80	6	8	1	5
Anthracite	92	3	3	1	1

E. CO₂ and Earth's Climate

- 1. CO₂ is a by-product of cellular respiration
- 2. CO₂ is a by-product of burning fossil fuels
- 3. CO₂ is a greenhouse gas
- 4. Atmospheric CO₂ increased 16% from 1880 to 1980
- 5. Long-term climatic change seems imminent but is difficult to predict

6.6 New Energy Sources

- A. Coal Conversion
 - 1. Gasification
 - a. Reduce length of hydrocarbon molecules to create liquid or gaseous fuels
 - b. Produce Syngas (CO and H₂)
 - 2. Coal Slurry
 - Coal dust suspended in water used as a heavy fuel oil replacement
 - 3. Coal limitations
 - a. Mining of coal has a serious environmental impact
- B. Hydrogen as a fuel
 - 1. Freeing hydrogen from compounds requires substantial energy
 - a. $CH_4(g) + H_2O(g) \rightarrow 3H_2(g) + CO(g) \Delta H = 206 \text{ kJ}$
 - b. $H_2O(I) + H_2(g) + 1/2O_2(g)$ $\Delta H = 286 \text{ kJ}$
 - 2. Hydrogen is difficult to transport
 - a. Hydrogen in contact with metal produces free hydrogen atoms
 - b. Hydrogen attempts penetrate the metal and make it brittle
 - 3. Hydrogen is not dense
 - a. The fuel equivalent of 20 gallons of gasoline occupies a volume of 238,000 liters.
 - b. Liquid hydrogen is stored under great pressure and is potentially explosive
- C. Other Energy Alternatives
 - 1. Shale
 - a. Must be heated to extract fuel molecules, and produces immense amounts of waste rock
 - 2. Ethanol from fermentation
 - a. Mixture of ethanol and gasoline gasohol
 - b. Ethanol is renewable
 - 3. Methanol
 - 4. Seed oils
 - a. Renewable